Understanding objects is a central building block of artificial intelligence, especially for embodied AI. Even though object recognition excels with deep learning, current machines still struggle to learn higher-level knowledge, e.g., what attributes an object has, and what can we do with an object. In this work, we propose a challenging Object Concept Learning (OCL) task to push the envelope of object understanding. It requires machines to reason out object affordances and simultaneously give the reason: what attributes make an object possesses these affordances. To support OCL, we build a densely annotated knowledge base including extensive labels for three levels of object concept (category, attribute, affordance), and the causal relations of three levels. By analyzing the causal structure of OCL, we present a baseline, Object Concept Reasoning Network (OCRN). It leverages causal intervention and concept instantiation to infer the three levels following their causal relations. In experiments, OCRN effectively infers the object knowledge while following the causalities well. Our data and code are available at https://mvig-rhos.com/ocl.
translated by 谷歌翻译
多个实例学习(MIL)是对诊断病理学的整个幻灯片图像(WSI)进行分类的强大方法。 MIL对WSI分类的基本挑战是发现触发袋子标签的\ textit {critical Instances}。但是,先前的方法主要是在独立和相同的分布假设(\ textit {i.i.d})下设计的,忽略了肿瘤实例或异质性之间的相关性。在本文中,我们提出了一种新颖的基于多重检测的多重实例学习(MDMIL)来解决上述问题。具体而言,MDMIL是由内部查询产生模块(IQGM)和多重检测模块(MDM)构建的,并在训练过程中基于内存的对比度损失的辅助。首先,IQGM给出了实例的概率,并通过在分布分析后汇总高度可靠的功能来为后续MDM生成内部查询(IQ)。其次,在MDM中,多重检测交叉注意(MDCA)和多头自我注意力(MHSA)合作以生成WSI的最终表示形式。在此过程中,智商和可训练的变异查询(VQ)成功建立了实例之间的联系,并显着提高了模型对异质肿瘤的鲁棒性。最后,为了进一步在特征空间中实施限制并稳定训练过程,我们采用基于内存的对比损失,即使在每次迭代中有一个样本作为输入,也可以实现WSI分类。我们对三个计算病理数据集进行实验,例如CamelyOn16,TCGA-NSCLC和TCGA-RCC数据集。优越的准确性和AUC证明了我们提出的MDMIL比其他最先进方法的优越性。
translated by 谷歌翻译
为了减轻从头开始构建知识图(kg)的挑战,更一般的任务是使用开放式语料库中的三元组丰富一个kg,那里获得的三元组包含嘈杂的实体和关系。在保持知识代表的质量的同时,以新收获的三元组丰富一个公园,这是一项挑战。本文建议使用从附加语料库中收集的信息来完善kg的系统。为此,我们将任务制定为两个耦合子任务,即加入事件提取(JEE)和知识图融合(KGF)。然后,我们提出了一个协作知识图融合框架,以允许我们的子任务以交替的方式相互协助。更具体地说,探险家执行了由地面注释和主管提供的现有KG监督的JEE。然后,主管评估了探险家提取的三元组,并用高度排名的人来丰富KG。为了实施此评估,我们进一步提出了一种翻译的关系一致性评分机制,以对齐并将提取的三元组对齐为先前的kg。实验验证了这种合作既可以提高JEE和KGF的表现。
translated by 谷歌翻译
事实证明,丰富的用户行为数据对于点击率(CTR)预测应用程序具有很高的价值,尤其是在工业推荐,搜索或广告系统中。但是,由于在线服务时间的严格要求,现实世界系统不仅可以充分利用长期用户行为。大多数以前的作品都采用基于检索的策略,在此策略中,首先检索了少数用户行为以进行后续注意。但是,基于检索的方法是最佳的,会造成或多或少的信息损失,并且很难平衡检索算法的有效性和效率。在本文中,我们提出了SDIM(基于采样的深度兴趣建模),这是一种简单但有效的基于采样的端到端方法,用于建模长期用户行为。我们从多个哈希功能中采样,以生成候选项目和用户行为序列中的每个项目的哈希签名,并通过直接收集与具有相同哈希签名的候选项目相关的行为项来获得用户兴趣。我们在理论上和实验上表明,所提出的方法在基于标准的基于注意力的模型上对长期用户行为进行建模,同时更快。我们还介绍了系统中SDIM的部署。具体而言,我们通过设计一个名为BSE(行为序列编码)的单独模块(行为序列编码),将行为序列哈希(这是最耗时的部分)解脱出最耗时的部分。 BSE对于CTR服务器是无延迟的,使我们能够建模极长的用户行为。进行离线和在线实验,以证明SDIM的有效性。 SDIM现在已在线部署在Meituan应用程序的搜索系统中。
translated by 谷歌翻译
第六版的AI城市挑战赛特别关注了两个领域的问题,在计算机视觉和人工智能的交集中具有巨大的解锁潜力:智能交通系统(ITS),以及实体和砂浆零售业务。 2022年AI City Challenge的四个挑战赛收到了来自27个国家 /地区254个团队的参与请求。轨道1地址的城市规模多目标多摄像机(MTMC)车辆跟踪。轨道2地址为基于天然语言的车辆轨道检索。 Track 3是一条全新的自然主义驾驶分析的轨道,该轨道是由安装在车辆内部的几台相机捕获的,该摄像头专注于驾驶员安全,而任务是对驾驶员的操作进行分类。 Track 4是另一个旨在仅使用单个视图摄像头实现零售商店自动结帐的新轨道。我们发布了两个基于不同方法的领导董事会成员提交,包括比赛的公共负责人委员会,不允许使用外部数据,以及用于所有提交结果的总管委员会。参与团队的最高表现建立了强大的基线,甚至超过了拟议的挑战赛中的最先进。
translated by 谷歌翻译
实时视频广播通常需要具有域知识的多种技能和专业知识,以实现多摄像头制作。随着摄像机的数量不断增加,指导现场运动广播现在比以往任何时候都变得更加复杂和挑战。在生产过程中,广播董事需要更加集中,响应,令人满意的知识。为了使董事免于其密集努力,我们开发了一个叫做智能总监的创新自动化体育广播指示系统,旨在模仿典型的人类循环广播过程,以实时自动创建近专业广播节目通过使用一组高级多视图视频分析算法。灵感来自于所谓的“三事”的体育广播建设,我们用一个由三个连续新型组件组成的事件驱动管道构建我们的系统:1)通过建模多视图相关性来检测事件的多视图事件定位2)多视图突出显示检测通过视图选择的视觉重视等级相机视图,3)自动广播调度程序来控制广播视频的生产。为了我们的最佳知识,我们的系统是用于多摄像机运动广播的第一个端到端的自动化指导系统,完全受到体育赛事的语义理解。它还是通过跨视网膜关系建模解决多视图联合事件检测的新问题的第一系统。我们对现实世界的多相机足球数据集进行客观和主观评估,这证明了我们的自动生成视频的质量与人类导向的质量相当。由于其更快的回应,我们的系统能够捕获更快速的快速和短期持续时间,通常由人道持有。
translated by 谷歌翻译
深度神经网络(DNN)已经证明了他们在各种域中的表现。但是,它提出了社会问题,如果他们适用于涉及有价值的资源分配的敏感域,如教育,贷款和就业,则会引发社会问题。在DNN可靠地部署到这样的敏感域之前,执行公平性测试至关重要,即,尽可能多地生成以发现公平违规的情况。然而,现有的测试方法仍然有限于三个方面:可解释性,性能和概括性。为了克服挑战,我们提出了一个新的DNN公平测试框架,与以前的工作不同于在几个关键方面的内容:(1)可解释 - 它定量解释DNNS的公平违反偏见决定的公平违规; (2)有效 - 它使用解释结果在更少的时间内引导更多样化的情况; (3)通用 - 它可以处理结构化和非结构化数据。在7个数据集中的广泛评估和相应的DNN展示了神经元的优越性。例如,在结构化数据集上,它会产生更多的实例(〜x5.84)并节省更多时间(平均加速度为534.56%),与最先进的方法相比。此外,还可以利用神经元的情况来改善偏置DNN的公平,这有助于构建更公平和值得信赖的深度学习系统。
translated by 谷歌翻译
在现实世界应用中的深度神经网络(DNN)的成功受益于丰富的预训练模型。然而,回溯预训练模型可以对下游DNN的部署构成显着的特洛伊木马威胁。现有的DNN测试方法主要旨在在对抗性设置中找到错误的角壳行为,但未能发现由强大的木马攻击所制作的后门。观察特洛伊木马网络行为表明,它们不仅由先前的工作所提出的单一受损神经元反射,而且归因于在多个神经元的激活强度和频率中的关键神经路径。这项工作制定了DNN后门测试,并提出了录音机框架。通过少量良性示例的关键神经元的差异模糊,我们识别特洛伊木马路径,特别是临界人,并通过模拟所识别的路径中的关键神经元来产生后门测试示例。广泛的实验表明了追索者的优越性,比现有方法更高的检测性能。通过隐秘的混合和自适应攻击来检测到后门的录音机更好,现有方法无法检测到。此外,我们的实验表明,录音所可能会揭示模型动物园中的模型的潜在潜在的背面。
translated by 谷歌翻译
本文介绍了Simmim,这是一个简单的蒙面图像建模框架。我们在没有特殊设计的情况下简化了最近提出的相关方法,例如通过离散VAE或聚类的块状掩蔽和令牌化。要研究蒙版图像建模任务学习良好的表示,我们系统地研究了我们框架中的主要组成部分,并发现每个组件的简单设计揭示了非常强烈的表示学习性能:1)用中等的输入图像随机掩蔽输入图像大型蒙面贴片尺寸(例如,32)进行了强大的文本前任务; 2)通过直接回归预测RGB值的原始像素不比具有复杂设计的补丁分类方法更差; 3)预测头可以像线性层一样光,性能比较重的形式更差。使用VIT-B,我们的方法通过预训练在此数据集上进行预培训,我们的方法在ImageNet-1K上实现了83.8%的精细调整精度,超过了以前最佳方法+ 0.6%。当应用于大约6.5亿参数的更大模型时,SwinV2-H,它在Imagenet-1K上使用Imagenet-1K数据实现了87.1%的前1个精度。我们还利用这种方法来促进3B模型(SWINV2-G)的培训,比以前的实践中的数据减少40美元,我们在四个代表性视觉基准上实现了最先进的。代码和模型将在https://github.com/microsoft/simmim公开使用。
translated by 谷歌翻译
我们提出了用于将Swin变压器缩放到3亿参数的技术,并使其能够使用高达1,536美元的图像培训1,536美元。通过缩放容量和分辨率,Swin变压器在四个代表视觉基准上设置新记录:84.0%的Top-1在Imagenet-V2图像分类准确度,63.1 / 54.4盒/掩模地图上的Coco对象检测,59.9 Miou在Ade20K语义细分中,在动力学-400视频动作分类上的86.8%的前1个精度。我们的技术通常适用于缩放视觉模型,这尚未广泛探索为NLP语言模型,部分原因是培训和应用中的困难:1)视觉模型经常面临规模的不稳定问题,2)许多下游愿景任务需要高分辨率图像或窗口,并且目前尚不清楚如何有效地将模型在低分辨率上预先培训到更高分辨率。当图像分辨率高时,GPU存储器消耗也是一个问题。为了解决这些问题,我们提出了几种技术,通过使用Swin Transformer作为案例研究来说明:1)归一化技术和缩放的余弦注意力,提高大视觉模型的稳定性; 2)一种日志间隔的连续位置偏置技术,以有效地将在低分辨率图像和窗口预先训练的模型转移到其更高分辨率的对应物。此外,我们分享了我们的关键实施细节,导致GPU内存消耗的大量节省,从而使得用常规GPU培训大型视觉模型可行。使用这些技术和自我监督的预训练,我们成功培训了强大的3B往返变压器模型,并有效地将其转移到涉及高分辨率图像或窗口的各种视觉任务,实现了各种最先进的准确性基准。
translated by 谷歌翻译